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Abstract-The snap-buckling instability of shallow shell-type structures that are subjected to a random transverse
load is presented. The deformation ofthe structure is primarily under a symmetric and an antisymmetric mode and
the investigation employs a method initially proposed by Kramers in the theory of kinetics of chemical reactions
and later adapted by the present authors for the case of symmetric snap-through of shallow, two pinned arches.
Analytical expressions are derived for the probability of snap-buckling in a time interval T in terms of the potential
energy functions in the neighbourhood of the stable and unstable equilibrium states of the structure.

INTRODUCTION

PROBLEMS encountered in the theory of stability of elastic structures are basically of
two types, (i) bifurcation, and (ii) snap-through. A large number of investigations have been
carried out on such problems when the loading is static. Corresponding stability investiga­
tions for dynamic loading are known as parametric instability and dynamic snap-through
problems. Parametric instability is the case of an initially straight prismatic column whose
ends are hinged and subjected to a periodic, axial, compressive force whereas in dynamic
snap-through the instability phenomenon involves a structure, such as a shallow shell
under a transverse load, leaving an initial stable equilibrium configuration for another
stable equilibrium position undergoing a finite jump over a potential barrier at a certain
critical value of the load. The latter is analogous to the "jump phenomenon" in the theory
of nonlinear vibrations and has been extensively investigated by Mettler [1], Hoff and
Bruce [2], Lock [3], etc. However, in modern aircraft and missiles the excitation ex­
perienced by the structure cannot be adequately described in terms of deterministic
functions of time. These forces fluctuate in a random manner over a wide band offrequencies
and have to be considered as stochastic functions of time defined only in probabilistic
terms. Hence, an examination of the dynamic stability problems by a statistical approach
is necessary as well as realistic.

Investigations on the instability of elastic structures under stochastic excitations have
started only recently. The treatment of the parametric instability under random loads is
available in papers by Samuels [4], Ariaratnam [5] and Stratanovich et al. [6]. Corres­
ponding investigations in the case of snap-through problems are very few. Vorovich [7]
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examined the snap-through of a cylindrical panel under stochastic edge compression and
obtained the stationary probability distribution of the response which is valid only for
infinite time lapses from the given initial equilibrium state of the structure. Goncharenko
[8] studied the same problem but obtained a quasi-stationary solution of the stochastic
differential equation ofthe response. In a previous paper the present authors [9] considered
stochastically loaded shallow, two-pinned arches and derived the probability of first
symmetric snap-through in a finite time Tfrom "locally" stationary solution of the Fokker­
Planck equation. The principal idea of their analysis is derived from Kramer's study [10]
ofchemical reactions where a method is indicated for calculating the probability ofescape of
particles over a potential barrier through the shuttling action of Brownian forces caused
by a surrounding medium in temperature equilibrium. This paper is an extension of
Kramer's analysis for snap-buckling cases where symmetric and antisymmetric modes are
involved in the buckling process.

A shell-type structure whose initial rise exceeds a certain specific value exhibits a dif­
ferent buckling behaviour from that with a very small initial central height. The latter loses
its stability under a single symmetric mode of deformation and is generally known as a
"snap-through" problem, while the former deforms under a symmetric and an antisym­
metric mode displaying a "snap-buckling" instability at a critical loading condition. In
the snap-through case discussed by Goncharenko [8] and the present authors [9], the
potential energy function has a single local maximum corresponding to an unstable
equilibrium configuration as shown in Fig. 1; and when the structure is subjected to a
stochastic load the problem involves the determination of the rate of diffusion of the
ensemble probability density across the potential hump in a two-dimensional phase space.
In the problem of snap-buckling the potential energy surface has a saddle point represent­
ing the unstable equilibrium state of the structure and when the structure is under stochastic
loads, the problem would then involve a discussion of the diffusion of the probability
density along a certain principal direction in a four-dimensional phase space. Such a method
is discussed in this paper. The analysis presented is confined to two degrees of freedom
systems, that is for structures exhibiting primarily two modes of deformation, namely a
symmetric and an antisymmetric mode.

FIG. I. Load-deflection curve and section of potential energy surface for symmetric snap-through
problem.
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FORMULATION OF THE PROBLEM
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(1)

(3)

Consider a shallow shell-type structure (for example arch, curved panel, shell, etc.)
whose initial geometry is such that primarily two modes of deformation are excited under
the applied loads. The structure is originally in equilibrium under a symmetrically distri­
buted static load of known intensity A. At time t = 0, suppose the structure is subjected
to an additional distributed stochastic load of intensity ~(t) having zero mean value. Let
q t and q2 be the amplitudes of the first symmetric and antisymmetric modes of deforma­
tion. Assuming that the applied loads have only a qt-component and no q2-component
(which is the case in many structural problems), and that the coefficient of damping !3
is the same in both modes of deformation, the equations of motion of the structure may be
written in the following general form

iit + f3iJ.t - Ft(qt, q2' A) = ~(t),

ii2+!3(h-F2(qt,q2,A) = 0,

where Ft and F2 are the static force fields along qt and q2 coordinate directions and are
related to the potential function V(qt, q2' A) of the structure by

oV
Ft =

oqt
,

(2)
OV

F2 =
Oq2

For any arbitrary but real value of the conservative load parameter A, the possible
equilibrium configurations of the structure can be obtained by solving the following
equations:

oV _ 0
oqt - ,

oV
--=0.
Oq2

Figure 2 shows the static load-deflection curves of the structure described by the above
equations. Let Amax correspond to the static buckling load of the structure. For values of
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<C <C
g g
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FIG. 2. Load-deflection curves for the snap-buckling problem.
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A < Amax ' the deformation of the structure is essentially symmetric. When A = Amax ' an
antisymmetric mode of deformation is picked up and the structure starts to buckle. The
configuration of the structure after snapping is again symmetric. It may be noted that such
a buckling phenomenon is initiated at a point where the original equilibrium path of the
structure branches into another equilibrium path at the onset of an antisymmetric defor­
mation. Hence the terminology "snap-buckling".

For any value of the load parameter Asatisfying the inequality Amin < A < Amax , where
Amin is the lower critical load (that is the buckling load achieved when the loading is pro­
gressively reduced after the structure has snapped), there are four distinct equilibrium
states of the structure as indicated by points A, B, B I and C in Fig. 2. The contours of equal
potential energy on the qcq2 plane are shown in Fig. 3. Here, the equilibrium configurations
of the structures are located at the bottom of the "depressions", the top of the "hills" and

Saddle Point

v•constant

(Depression) (Depression)

FIG. 3. Contours of equal potential energy.

the "saddle points". The initial equilibrium configuration at A and the buckled configura­
tion at C are associated with the symmetric mode q 1 only and are stable because they are
located at the bottom of depressions in the potential energy surface. The equilibrium con­
figuration at the point B 1 is described by the symmetric deformation q1 only and is unstable
since it is situated at the top of a hill in the potential energy surface. If the equilibrium path
of the structure passes through the point B 1 , only a "snap-through" type of instability
will be initiated; then, the probability of snapping under stochastic loading for such struc­
tures will be given by the analysis presented in paper [9]. The equilibrium configuration
of the structure at the point B is associated with both symmetric and antisymmetric defor­
mations and is unstable since it is located at a saddle point of the potential energy surface.

The dynamic path followed by the structure in the QCq2 configuration space, starting
from the initial stable equilibrium configuration corresponding to the point A, will depend
on the nature of the perturbation given. If the magnitude of the perturbation is sufficiently
small, it is reasonable to expect that the dynamic path from the point A to the vicinity of
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the point C will tend to follow one for which the slope ofascent is a minimum and the slope
of descent is a maximum everywhere on the potential energy surface. Such a path can be
defined analytically if the perturbation is a deterministic function of time [2].

Initially at t = 0, the structure is in equilibrium in the stable configuration (ql = qlA,
qz = 0) corresponding to the load parameter A, when the stochastic excitation W) is applied.
The dynamic state of the structure at any subsequent time t can then be described by the
phase variables (ql' qz, VI' vz) where VI = til and Vz = tiz. The motion of a point or a
"particle" described by the above variables in the phase space is random since ~(t) is sto­
chastic. That is, for different members of the ensemble of random loading ~(t), there will
be an ensemble of trajectories of the phase point or "particle" starting from the position
(qlA' 0, 0, 0) corresponding to the point A in the phase space. During a time interval T,
some of these paths may have remained entirely within the neighbourhood of the initial
equilibrium point A while some others may have surmounted the potential barrier and
reached the vicinity of the point C which indicates a buckled state of the structure. The
problem is to determine the probability PT that in a time interval T, starting from an initial
stable configuration at A, the structure would have snap-buckled and be found in the neigh­
bourhood of the configuration at C.

Since the potential energy difference between the equilibrium points A and B is less
than that between A and B l , it may be expected that a considerable fraction of the paths
of the phase points leading towards the point C will be clustered in the neighbourhood of
the point B as indicated in Fig. 4; and the projection of these trajectories on the ql - qz
plane will be nearly parallel, around the point B, to the projection of the line of downward
curvature of the potential energy surface at the saddle point B. Let Sl and Sz denote the lines
of principal curvature coordinates of the potential energy surface and suppose that the
Sl coordinate corresponds to the direction of the downward curvature at the saddle
point B. It will be shown in the following pages that the probability PT offirst snap-buckling
may be evaluated from a steady flux rate jB of the probability density across the hyper­
surface Sl = SiB in the phase space. To facilitate the evaluation of this flux ratejB, it is then
convenient to reformulate the problem in terms of the principal Sl and Sz coordinates.

t'T

Boundary sl • SIB

t'T

FIG. 4. Random motion of phase points ("particles").
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FOKKER-PLANCK EQUATION

When the stochastic load W) is applied, the state of the structure at any instant is des­
cribed by the phase variables (ql' q1, VI , V1' t). If the first probability density p(q1> q1 ,VI'
V1' t) of the vector random process is known, the probability of first snap-buckling will be
given by

PT = Loooo Loooo Loooo 1:H p(v I , v1' ql, q1, T) dql dq1 dVI dv1· (4)

Here it is assumed that the trajectories describing the random motion of the phase point
end up in the neighbourhood of the depression at C once they cross the boundary passing
through B. Obviously, the probability density p(v 1 , V1' Ql' q1, t) must satisfy the initial
conditions, and the time interval T should be sufficiently small compared to the relaxation
time 't', so that no trajectory that has once crossed over the boundary ql = qlB has drifted
back and the expression (4) may represent the probability of first snapping of the structure.

If ~(t) is a stationary, wide-band random process with a delta correlation, the response
process (VI' V1, ql' q1' t) can be approximated by a Markov Process [11] and the first
probability density p(v l , V1' ql' q1' t) may be described by the Fokker-Planck equation.
Writing the equations of motion (1) as a set of state equations

the Fokker-Planck equation giving the probability of the response is

op op op op op
-F1--v1--F1--V1-

ot oU l Oql OV1 Oq1

o ( D op) 0+P8";;; v I P+7i oV
I

+P~U1P),

where

<WI)W1) = 2D<5(t l -t1),

angular brackets denoting the ensemble average and D, the intensity coefficient.
Any solution of (5) must satisfy the condition

(5)

(6)

which expresses the fact that the structure is initially in equilibrium at the point
A(ql = QlA, Q2 = 0).

DIFFUSION OF PROBABILITY IN THE PHASE SPACE

An exact solution of the equation (5) satisfying the boundary condition (6) is not known.
But, if the energy imparted by the stochastic load ~(t) is assumed small in comparison with
the height of the potential barrier, that is, if

D
7i « h, (7)
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(9)

then the equation (5) can be approximately solved. To visualize this, consider the diffusion
flow of the phase points that represent the dynamical states of a large number of identical
structures each subjected to the action of a different sample function of the random process
~(t). The Fokker-Planck equation (5) may then be taken to be the continuity equation for
the diffusion of these phase points or "particles" and the probability density p may be
interpreted as the mass density for this flow. At time t = 0, there is a concentration of par­
ticles near the point A given by the delta function distribution (6). With the passage oftime,
the diffusion of particles from the point A towards the point C primarily through the tran­
sition point B will be started tending to establish a statistical equilibrium for the flow.
Under the assumption (7), the diffusion will be slow and may be considered as a quasi­
stationary process. Further, if the time of interest T is much smaller than the correlation
time 't, the flow will be principally towards the point C. The probability density distribution
in the neighbourhood of any point in the phase space will then be given by the stationary
solution of the diffusion equation (5) with the potential function V appropriate to that
neighbourhood indicating that the diffusion process is locally stationary. The probability
density in the neighbourhood of A will be the stationary solution of the equation (5) with
the antisymmetric deformation q2 = O. That is,

{
{3 [1 2 1 2 ]}PA = IXA exp -15 "2V1 +2(Vll)A(q1 -q1A) -h , (8)

where IXA is a normalizing constant and (Vll)A is the quantity d2 v/dqi evaluated at the point
A. The value of the potential function is chosen such that it is zero at the point B. In the
neighbourhood of the point B, the potential energy is a function of both the symmetric
and antisymmetric deformations, and is given by the expansion

1 2 2 ( 02V )
VnearB ~ "2.L .L (qi-qiB)(qj-qjB)~ .

•=1 J=l q. qJ atB

The presence of the terms 02V/oq; oqj (for i i= j) in the Fokker-Planck equation valid near
B poses certain difficulties in obtaining a desired type of solution. Also, the flux rate jB of
the probability density across a hyperplane through the saddle point B is in the direction
of the downward curvature of the potential energy surface at B, as explained before.
Therefore, the Fokker-Planck equation governing the probability density of the particles
in the neighbourhood of the point B must be set up in terms of the lines of curvature co­
ordinates of the potential energy surface at the point B.

As mentioned previously, let Sl and S2 represent the new axes of reference with respect
to which the motion of the structure, in the vicinity of the equilibrium point B, will be now
described. The transformation law relating the s-system to the original q-system of coordi­
nates is given by

q1 = Sl cos 0+S2 sin 0,

q2 = -Sl sin 0+S2 cos 0,

where 0 is the angle of transformation. Let V* represent the potential energy of the structure
in terms of the new variables Sl and S2. The value of V*(Sl,S2'A.) can be calculated from
V(q 1, q2, A.) using the relations (9). By the definition of the s-axes, the variation of V* occurs
uniquely with respect to each s1 and S2 direction and the cross differential terms 02 V*/os; osj

vanish for i i= j.
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(10)

(11)

(13)

(12)

It may be noted that the saddle point B represents a "depression" with respect to the
principal s2-direction and a "hill" with respect to the principal scdirection in the potential
energy contours shown in Fig. 3. This means that the cluster of random phase trajectories
in the neighbourhood of the point B will be essentially directed along the sl-direction
towards the point C as shown in Fig. 4. Hence, the flux rate jB of the particles across the
boundary Sl = SlB must be obtainable from the marginal probability density distribution
Pl(Sl,Sl)' Explicitly stated,jB is given by

jB = f_oooo f_oooo f:oo U1P(SlB, S2, U1, u2) dS2 dU 1du2,

= Loooo U1Pl(SlB,u1) du l'

whereu 1 = Sl,U2 = S2'
The equations of motion of the structure (1), in the neighbourhood of the equilibrium

point B, referred to the principal s-axes become

81 +PSl - FT(Sl' A) = ~(t) cos e,
82 + PS2 - F!(S2, A) = ~(t) sin e,

whereFT = -OV*/OSl,F! = -OV*/OS2' Themarginalprobabilitydistributionspl(sl'u1)

and P2(S2, u2), in the neighbourhood of the point B, are then given by the stationary solution
of the following independent Fokker-Planck equations:

*OPl 0Pl P a ( D cos
2eOP1)0= -F1-;--u1-;-=-+ -;- U1Pl + P -;-,

UU 1 USl UU 1 UU 1

o= F* 0P2 0P2 P a ( D sin
2eOP2)

- 2 -;--U2-;-=-+ -;- U2P2 + P -;-.
UU 2 US2 UU 2 UU 2

RATE OF FLUX OF PROBABILITY DENSITY

The marginal probability densities Pl (s1, u1) and P2(S2, U2) in the neighbourhood of
the point B are given by the solution of the equations (12) and (13) respectively with the
potential energy v* appropriate to that neighbourhood given by the expansion

V~earB ~ !<VTdB8i+1(V!2)B8L

where (V~)B represents the value i3 2 v*/i3sf calculated at the point B. The quantities
(VT1)B and (V!2)B can be evaluated from (V11)B, (V22)B and (vdB using a Mohr's circle
transformation:

(V*) - (VldB+(V22)B !{[(V ) -(V) J2 +4(V )2}1/2 (14)llB- 2 2 11B 22B 12B,

(V*) - (V11)B+(V22)B+!{[(V ) -(V) J2+4(V )2}1/222B- 2 2 llB 22B 12B' (14a)

(14b)



Snap-buckling of shell-type structures under stochastic loading 663

(14c)

The angle () of the transformation is given by the equation

tan 2(} = 2(VdB
(Vll)B-(V22)B

Using the above results in equations (12) and (13), the densities PI and pz are found to be

Pl(Sl, Ul) = IXl exp [ 2D :~z iui +(Vr1)BSI)l (15)

pz(sz, uz) = IXz exp[ 2D~i~Z (}(u~ +(V!z)BS~)l (16)

where IXl and IXz are normalizing constants. The solutions (15) and (16) correspond to a
completely stationary situation with a net flux across any boundary through the point B
equal to zero. However, due to the negative sign for Vr1 representing an unstable equili­
brium state at the point B, another solution for PI(Sl' Ul) is possible for which IX 1 = IX 1(z),
Z = U 1 -cs1 where C is a constant to be determined. Since (V!Z)B is positive, the only
solution possible is the one given in (16). This means that there is a diffusion of the prob­
ability current taking place only along the principal Sl direction, while along the principal
Sz direction the net flux is zero. Writing <1>1 = -(Vrl)B and seeking a solution of the form

PI = IX 1(Z) eXP [2D :~z (}(ui -<I>lSI)1 (17)

it may be seen from the Fokker-Planck equation (12) that

_ dIX l z dZIX l
(CUI -pu1-<I>lS1) dz +D cos () dzz = O.

The above equation is valid only if C satisfies the condition

(c-P)u 1 -<I>lSl = (c-p)z,

or

(18)

IX 1(z) is then given by

and is found to be

fz [-(C- P)ZZ]
IX 1(Z) = Al exp 2Dcosz () dz, (19)

where Al is a constant. The density distribution (17) will be bounded only if c > P; hence,
the positive sign is chosen in the expression (18). If the lower limit of the integral in (19) is
taken as - 00, then the expression (17) will give a distribution for which PI -+ 0 for Sl » SIB
(in the region near to and right of the point C) and PI -+ PA for Sl « SIB (for regions near to
and left of the point A). Hence, PI may be considered as the asymptotic form valid near B
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of a stationary marginal distribution

The quantity jB may now be calculated from the expression (10).

foo {f Ul [-(C- fJ)Z2]} [-fJ ]
= _ 00 Al _00 exp 2D cos2 () dz U 1 exp 2D cos2 () ui du 1 ,

_ D cos3 (}(2Dn) 1/2
- Al fJ -C- ,

PROBABILITY OF FIRST SNAP-BUCKLING

(20)

(21)

The number of particles in the neighbourhood of the equilibrium point A is given by
the stationary probability density PA in the expression (8). Since PI --+ PA in the neighbour­
hood of A, DC1(Z) must tend to DCA" Therefore, from the expression (19)

foo [-(C-fJ)Z2]
DCA = Al -00 exp 2D cos2 () dz,

(
2Dn) 1/2

= A 1 cos () C - f3 .

The number of particles originally near the point A is

The probability PT of first snap-buckling in a time Tis

(22)

(23)
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and on using the expressions (18), (21) and (23)

DISCUSSION

665

(24)

It may be observed that the expression derived for the probability PT of first snap­
buckling is valid only if the following conditions are satisfied.

(i) The height of the potential barrier is large in comparison with the energy supplied
by the random forces as given by the inequality (7), and

(ii) the prescribed time interval Tfor the instability to occur is small compared to the
relaxation time 1" of the diffusion process so that the probability PT evaluated represents
the first rather than the eventual snap-buckling. Though an exact estimate of 1" requires the
complete nonstationary solution of the diffusion equation (5) which is not available at
present, it may be seen that the relaxation time decreases with an increase in the rate of
diffusion, that is, it decreases with an increase in the intensity coefficient D of the process ~(t).

The value of the probability PT may be expected to be influenced considerably by the
term exponential (- Ph/D) in the expression (24). Hence, it is reasonable to expect that the
probability of snap-buckling will be highly sensitive to any small variation in the static
load parameter A. (which will cause a large variation in the height h of the potential barrier
and hence affecting greatly the exponential term) and in the coefficient of damping p. It
may also be noted that for cases where the antisymmetric deformation q2 is not excited,
the formula (24) reduces to the one obtained by the authors in their previous paper [9J
where a symmetric snap-through case of shallow arches has been presented. For such prob­
lems where q2 = 0, the principal 51 coordinate coincides with the ql coordinate with the
angle eof transformation in expression (9) being zero. Consequently, the saddle point B
in Fig. 3 coincides with the equilibrium point B 1 indicating a snap-through type of insta­
bility of the structure.
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A6cTpaKT--AaeTCH 3aAaqa HeycTOllqHBOCTH npomenKHBaHHH KOHCTPYKl.\HH, THna nonorHX o6onoyeK,
lloABeplKe/fllblX AeltcTB1f1O llpOH3liOJlbHOH nonepeqHOH Harpy3KH. Aelj>opMaUIflI KOHCTpyKUHH HaXO,IUlTCH,
CHaqaJla, B cHMMeTpHqeCKOK H aHTHcHMMeTpHqeCKOH lj>opMe. I1ccJleAOBaHHe Hcnonb3yeM MeToA, npe,QJIO­
lKeHHblK cnepBa KpaMepoM B TeopHH KHHeTIlKIl XHMHqeCKHX peaKl.\IlK, H ,uane a,uanTHpoBaHHiUI. aBTOpaMIt
,uJlH CJlyqaH npOmeJlKIlBaHIlH nOJlOrHX, ,uByX CKpenJleHHblX apoK. BbIBo,uHTCH aHaJlltTHqeCKHe 3aBRCR­
MOCTH )J.JlH BepoHTHocTIf npomenKHBaHHH ,uJlH IlHTepBana BpeMeHIf T, B BbipalKeHHHx )J.nH lj>YHKUIlH
nOTeHl..\HaJlbHOH 3HeprHH, B COCe.l\CTBe YCTOHqHBblX II HCyCTOK'lHBbIX COCTOllHHH paBHoBecHH KOHCTpyKURR.


